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Abstract-In wireless communication networks, an 
important issue that must be addressed is the limited 
energy supply of a mobile device, especially in wireless 
vidw applications. In this paper, we develop a parametric 
video encoding architecture, which is fully scalable in 
power consumption, and esiablish the power-rate- 
distorlion (P-R-D) model of the video encoding system. 
Both theoretically and experimentally, we show that by 
using this P-R-D model, the encoding system is able to 
automatically adjust its complexity control parameters to 
match the available energy supply of the mobile device 
while maximizing the picture quality. The P-R-D model 
provides a theoretical guideline for system design and 
performance optimization in wireless video 
communication under power constraint. 

Keywords-Energy consumption, complexity scalability, 
video coding, wireless video Communication. 

1. INTRODUCTION 
In wireless communication environment, since the 

wireless networks are to accommodate mobile users 
with portable and battery-powered equipments, an 
important issue that must be addressed is the limited 
energy supply of a mobile device. The problem 
becomes even more critical with the power-demanding 
video encoding functionality integrated into the mobile 
computing platform. As the power goes down, the 
performance of video encoding is limited by the 
available processing power as well as, or rather than, 
the available transmission bandwidth. Moreover, from 
the power consumption perspective, efficient video 
compression significantly reduces the size of the video 
data to he transmitted, which in tum saves a significant 
amount of energy in data transmission. On the other 
hand, more efficient video compression often requires 
higher power consumption. All of this implies that there 
is a tradeoff among the bandwidth R, power 
consumption P, and video quality D. To find the hest 
trade-off during system design and performance 
optimization, we need an analytic framework to explore 
the P-R-D behavior of the video encoding system. To 
achieve flexible management and control of power 
consumption, we also need to develop a video encoding 
architecture, which is fully scalable in power 
consumption. 

In wireless video communication, data transmission 
and video encoding are the two dominant power- 
consuming operations. In order to extend the battery 
life, research efforts have been made towards 
decreasing the transmission energy [2][6], and reducing 
the energy consumed by video encoding, i.e., lowering 
the complexity ofthe video encoder [1)[5]. However, to 
our best knowledge, there has been no video encoder 
available which is fully scalable in power consumption 
in the literature. In addition, there has been no analytic 
framework to model the P-R-D behavior of the video 
encoding system, which can be used as the guideline for 
system design and performance optimization in wireless 
communication. 

In our work, we develop a fully complexity scalable 
video encoder. Specifically, we introduce several 
control parameters into the video encoder to control the 
power consumption of the major encoding modules. 
The analysis of the R-D behaviors of these control 
parameters results in a comprehensive P-R-D model for 
the video encoding system. Based on the proposed P-R- 
D model, we develop a quality optimization scheme to 
allocate the computational power and maximize the 
video presentation quality. 

This paper is organized as follows. In Section 2, we 
present the analysis of the complexity scalable video 
encoder. Section 3 describes the integrated P-R-D 
model and the design of the power-constrained video 
encoding. Experimental results are given in Section 4. 
Concluding remarks are provided in Section 5. 

11. POWER SCALABLE VIDEO CODING 

From the power consumption point of view, higher 
complexity of the video encoder, more processor cycles 
are required in the computation. This implies that the 
power scalability can be translated into complexity 
scalability eventually. Let C be the computational 
complexity, measured by the number of processor 
cycles per second, we have: 

where @(P) is a function to match the given power 
supply to the computational complexity. As the 
hardware implementation is concemed, the dynamic 
voltage scaling (DVS), a CMOS circuits design 

c= @(P) ( 1 )  
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technology [7], can be used to achieve this goal. Thus, a 
power scalable video encoder is reduced to a design of a 
computational complexity scalable video encoder. 

A.  Encoder Complexity Analysis 

Typical video encoders consist of several major 
encoding modules: motion estimation and compensation 
(ME), PRECODING, and entropy coding (ENC). Here, 
the PRECODING modules include the DCT, IDCT, 
quantization, dequantization and reconstmction 
modules. Experimental results show that ME is the most 
computation-intensive module, which consumes about 
one-third of the processing cycles, and the 
PRECODING modules collectively consume about 
50% of the total processing cycles. Meanwhile, the 
ENC module only uses a relatively small amount of the 
total CPU time, especially at low coding bit rates. 
Therefore, the ME and PRECODING modules are the 
two important candidates for computational complexity 
management. By integrating parametric complexity 
scalable ME and PRECODING schemes, the whole 
video encoder can be fully complexity scalable, i.e., 
energy scalable. 

B. Complexiry Scalable Motion Estimation Design 

The most time-consuming part of ME is the SAD 
(sum of absolute difference) computation. The ME 
process is just a sequence of SAD computations to find 
the macroblock (MB) position with the minimum SAD. 
This suggests that the computational complexity of the 
ME module can be controlled hy the number of SAD 
computations, which is denoted by A,, and used as the 
complexity control parameter. Thus, the computational 
complexity of ME, denoted by C, is simply given by: 

CAE = ,?ME x cs, , (2) 
where CUD represents the complexity of one MB SAD 
computation. It is well known that the moving objects 
in the video scene contribute most to the overall visual 
quality. This suggests that to maximize the video 
quality under energy constraint, we need to allocate the 
available AME SAD computations among the MBs 
according to their motion characteristics. In ow 
proposed scheme, the SAD computation allocation is 
performed according to the motion distribution in one 
scene. The Motion History Matrix (MHM) approach 
developed in OUT previous work [4] is adopted. The 
MHM shows not only the motion history but also the 
motion location, thus we can use this information to 
estimate the motion distribution and distribute the 
available SAD computations accordingly. Most 
importantly, our MHM approach has very low 
complexity overhead and is very cost effective in 
practice. After the allocation, the number of SAD 
computations is limited for each MB, and a complexity 
controllable ME is employed to find the motion vector. 

By dynamically allocating the SAD computations 
throughout the whole frame and applying the parametric 
motion estimation scheme, the complexity of the ME 
module can be controlled freely and the overall video 
quality is improved under the energy constraint. We 
refer to this scheme as AM, - scalability. 

The simulation results suggest the following relation 
between ,IhlE and the frame SAD S, 

SJA& = bo + PIX e-nZx, x = lME /,I'"",E (3) 
where x denotes the normalized complexity parameter, 
,IME"" is the maximum value of AME, and Bo, PI, pz are 
the model parameters. Simulation with SSD (sum of 
square difference) that is more applicable in practical 
applications yields similar results. In this case, the 
frame SSD S, becomes the variance of the difference 
frame. Hereafter, we assume SSD is used for ME. 

C. Complexity Scalable PRECODING Design and 
Dynamic Rate Control 

In typical video encoding, DCT is applied to the 
difference MB affer motion compensation, or the 
original MB if its coding mode is INTRA. The DCT 
coefficients might become all zeros after quantization, 
especially at low coding bit rates. We refer to this MB 
as an all-zero MB (AZMB). Otherwise, it is called a 
non-zero MB (NZMB). If we can predict an MB to be 
an AZMB, all the PRECODING operations can he 
skipped. This unique property of the AZMB is used to 
design a complexity scalable scheme for the 
PRECODING modules. A complexity control 
parameter ,IpRE is introduced. After motion estimation 
and compensation, we sort all the SSD values in an 
ascending order. Except the last Apm MBs, all the other 
MBs are forced into AZMBs to skip the PRECODING 
operations. Let C-D be the number of processor cycles 
needed hy the PRECODING operations to finish one 
NZMB, the complexity of PRECODING modules is 
estimated by: 

CPRE = APRE C M  I (4) 
We refer to this type of scalability as ,IpRE scalability. 

Since the DCT coefficients in the AZMBs are all 
zeros, which do not need any encoding bits, the entire 
available bit budget can be allocated to the NZMBs. In 
this work, we adopt the h e a r  rate control (LRC) 
algorithm developed in our previous work [3] to 
perform dynamic bit allocation and rate control. This 
rate control mechanism allows dynamic bits relocation 
from the AZMBs to the NZMB's, as well as a near- 
optimal hits allocation among the NZMB's. As 
mentioned before, the moving objects have unique 
significance in subjective video quality evaluation. In 
motion estimation and compensation, these regions 
often correspond to the blocks with relatively large SSD 
values. Using the A,,, scalability and the dynamic rate 
control scheme, the AZMB bits are reallocated to these 
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blocks, resulting in improved overall visual quality. Let 
R be the target coding hit rate in bits per pixel (bpp). 

By using the classic K-D distortion analysis, 
theoretically, the distortion of our complexity scalable 
video encoder is given by: 

D(R;y)=ZXB,p (I/ZX (I-y)'+y(l+aav)~~'Ywv). y=&&, ( 5 )  
where y denotes the normalized complexity parameter, 
M is the number of MBs in one frame, Bo is the 
estimation of the average variance, and y is a model 
constant. ad is a constant, given by: 

a0 = I/e + 112 - I ,  (6) 
111. MODELING AND DESIGN OF POWER 

CONSTRAINED VIDEO ENCODING 

Based on the proposed complexity scalable video 
encoding structure, we model the P-R-D behavior of the 
video encoder and develop optimized power-scalable 
video encoding schemes to maximize the video quality. 

A. Power-Rare-Distortion Model 

According to our proposed AME-scalability and A,, 
scalability schemes, the computational Complexity of 
our video encoder is given by: 
CfR; AME APE,  A F )  = (Cm + Cpm + Sx Rx C B I ~  

= Z X  (C& C.& C3R) (7) 
where CBrT is the per bit ENC complexity, and S is the 
size of the frame. C1, C2, and C3 are constants that can 
be obtained either by theoretical cycle estimation or 
from simulation statistics. 

Using (3) as an approximation of Bo in ( 5 ) ,  the 
distortion of our video encoder is given by: 
06% r,yj = 2x @&Pt̂ erp6fls9Jx (l/Zx <f -~z+~l+=&Zz7wJ ,  (8) 

Equation (8)  measures the spatial video quality for a 
single frame. On the other hand, the frame rate AF plays 
a very important role in video quality evaluation, 
affecting the temporal video quality. The temporal 
quality can be estimated from (8) when the parameters 
R, x and y are all zeros. In our work, we measure the 
video presentation quality considering different weights 
for both the spatial and temporal quality, which is given 
by: 

(9) 
We choose the perceptual weights as follows, 

where z is the normalized frame rate and z = Ad'" 

D,= DS X (Bo + 83 + UJ~ X D(R: XJ], 

us= (I-.#. Or= 1 - an, 00) 

(11) 
Thus, for a given power supply level P, to achieve the 
best video quality, the solution can be obtained by 
solving the following minimization problem: 

min,~,~,,P,(R;x,y,z), s.t. @(P)=zx (C,x+C&CsC), (12) 
B. R-D Optimized Power Constrained Video Encoding 
Design 

Based on the proposed P-R-D model we can find the 
best configuration of the complexity parameters to 

From (1) and (7), we have: 
@(P) = Z X  (CIX+ C,@ CjR), 

maximize the video quality. The optimal complexity 
parameters (x.y.2) can be obtained using binary search at 
an adjustment period, say 5 seconds. Our R-D 
optimized power-scalable video encoder system 
operates as follows: 

Step 1: Model parameters estimation: the parameters 
in the P-R-D model ,Do, PI, ,D2, and y are estimated from 
the R-D statistics of previous frames. 

Step 2: Optimization: Find the optimal complexity 
parameter set {x,y,z} by solving (12) when the power 
control module is triggered, say every 5 seconds. 

Step 3: Encoder complexity control: Set the 
encoding frame to A~zxf, , .  Distribute the allocated 
available computations A M p x x A M E m ,  among the MBs 
and use the complexity controllable ME scheme to get 
the motion vector. Apply the Apx scalability scheme 
and dynamic rate control after motion compensation. 

C. Power-Bit Allocation for Multiple Encoders 

Having analyzed the P-K-D behavior of one single 
video encoder, now we discuss for a given total power 
constraint and total bit rate budget, how to adaptively 
perform the power-bit allocation for each individual 
encoder so as to minimize the total distortion under the 
power constraint. 

The overall video quality of multiple encoders can 
be judged by using different weight factor mi for each 
video encoder. 

where D,' is the individual distortion for the i'h encoder. 
The total power consumption is composed of the 
individual power consumption (C ',,given by (7)): 

BZ mi x D,'(R';~',Y'.~'), (13) 

(14) @(P)=Z c '(R: 1, y', 2'). 

Now for power-bit allocation across multiple N 
video encoders, tbe objective is to minimize the total 
video distortion under the total power (P) and tbit rate 
constraints (R):  

N 

min E m i D ~ ( R ' ; ~ ' , y ' , z ' ) ,  

s.t.ZRR'< R. and ~ C ' ( R ' ; ~ ' , ~ ' , ~ ' ) = , ~ P )  (15) 

Optimization methods such as Lagrange multiplier 
and penalty function methods can be used to solve the 
above optimization problem. Further simplification and 
analysis of the P-R-D model lead to the reduction of the 
computational load of solving this problem. 

IV. EXPERIMENTAL RESULTS 

,R',*',y',*', i=l 

N 

i=l 

To evaluate the performance of our proposed video 
encoding system, we implement the P-R-D model into 
the public domain H.263+ encoder. In our simulations, 
,IME'"" is 50 and fmur is 30%~. The video distortion is 
measured by the mean square error (MSE). 
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To test the accuracy of the P-R-D model, we run the 
video encoder over the “Foreman” QCIF sequence at 
128kbps and 15 f p s  for different complexity control 
parameters (x,y) and measure the corresponding 
distortion. Fig. 1 shows the comparison of the actual 
results with the estimated results by the model. We can 
see that the proposed model is quite accurate. 
Simulation over other test video sequences yields 
similar results. Fig. 2 (a)<c) shows the picture 
distortion, and the optimal control parameters (x,y,z) as 
functions of the percentage of power consumption. We 
can see that using the proposed P-R-D model and the 
optimized power scalable video encoding schemes, our 
video encoder can adjust its computational complexity 
and energy consumption according to the energy supply 
level. From the subjective video quality point of view, 
as the encoder scales down the power consumption, the 
video quality degrades from the highly quality motion 
video to still image. 

V. CONCLLIDWO REMARKS 

In this work, we have developed a parametric video 
encoding architechlre that is fully scalable in 
Computational complexity. We have also developed a P- 
R-D analytic framework for video encoding under 
power constraint. Coupled with the quality optimization 
scheme, the video encoder is able to determine the best 
configuration of its complexity control parameters to 
match the available power supply level of the mobile 
device. Our work establishes a theoretical basis and 
provides a guideline in system design and performance 
optimization for wireless video communication under 
power constraint. 
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( 4  (b) 
Fig. 1. Complexity distortion surface D(x,y), (a) 
Estimated results by the model, (b) Actual results. 

(a) (b) (c) 
Fig. 2. R-D optimized power control for the “Football” CIF video at (a) R = 0.1 bpp, (b) O.Sbpp, (c) 1.0 bpp 
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